




# Skills development in HE

Dr. Evangelia (Lia) Krassadaki



Hellenic Mediterranean University, 27-31 May, 2024, Chania, Crete

# **Some basics**

# Learning

Learning is any, more or less, permanent change in behaviour that comes as a result of experience (Bigge, 1999)

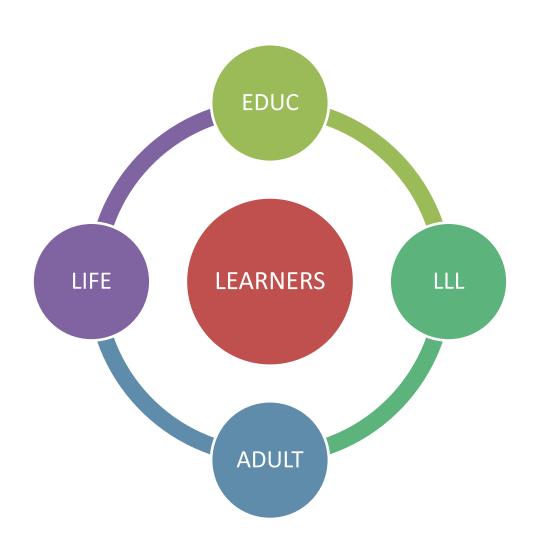
Learning is any process which in living organisms leads to a permanent change in perception, which is not due exclusively to biological maturation or ageing (Illeris, 2016)

### **Education**

The designed learning activities offered by various institutions in which learners participate consciously and with specific objectives (Jarvis, 2004)

### **Adult Education**

Any learning activity undertaken throughout life, with the aim of improving knowledge, skills and competences, in a perspective of personal, civic, social and/or employment-related development.

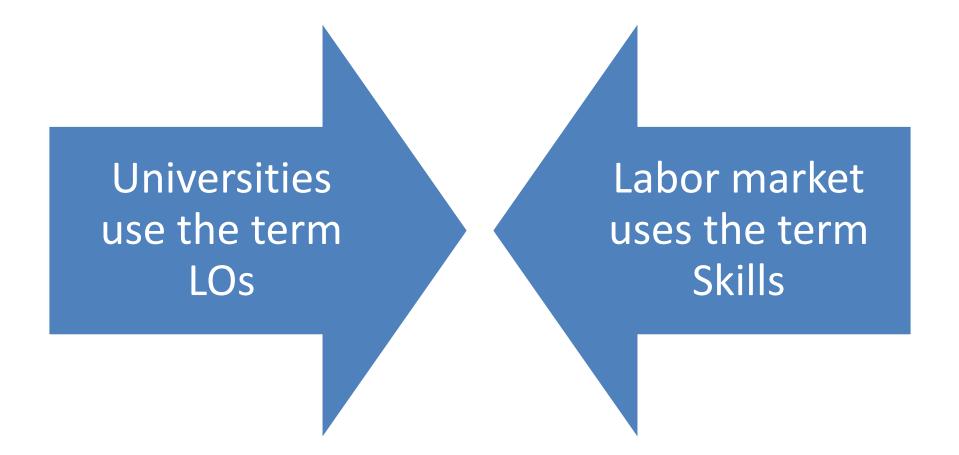

Any learning process through which, individuals who are considered adults by society to which they belong to, develop their abilities, enrich their knowledge and skills, knowledge, improve their professional skills and qualifications or orient them in a different direction, bringing changes in their attitudes or behaviour.

With a view to their full personal development and participation in a harmonised and self-reliant social, economic and cultural development. UNESCO (1976)

# **Life-Long Learning**

Any learning activity undertaken throughout life with the aim of improving knowledge, skills and competences, in a perspective of personal, civic, social and/or employment-related development (EU, 2001)

## We are Learners in various contexts




# The emerging importance of the qualities that graduates should possess

- The emphasis on the student & future graduate is rooted in socioeconomic factors such as advances in science and technology, the society of the globalised world, knowledge-based work to a significant extent, exclusion and unemployment, multiculturalism, the mismatch of educational programmes with contemporary needs, the emergence of new professions and new demands, sustainability and viability, etc.
- There have been several theoretical approaches over the last 20 years to the characteristics of graduates. According to Cummings (1998) most approaches are based on: the Education is a lifelong process, the focus on the relationship between education and employment, due to phenomena of underemployment, unemployment, vulnerability of population groups, etc., and the development of measurable results as part of the quality assurance process.

# **Vocabularies**

# Different vocabularies ...

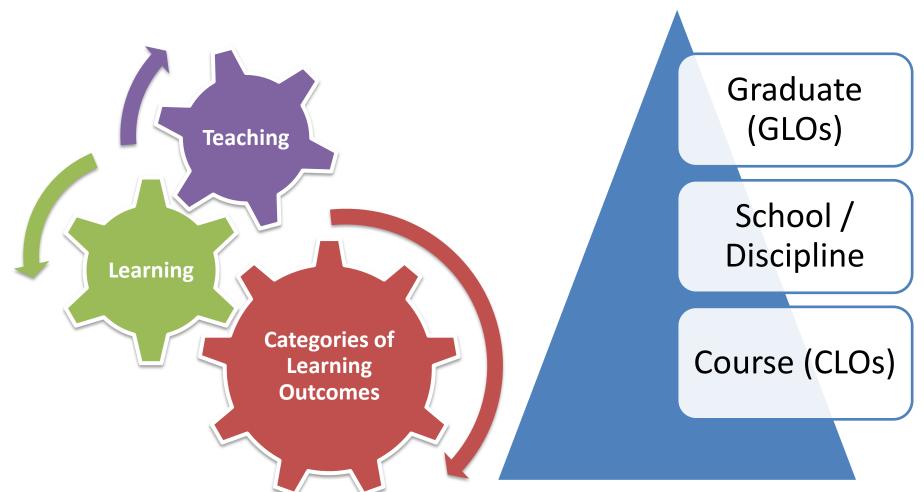


# **Distinction between LOs - Competences**

# Learning Outcomes

Formulated by the academic staff

Statements of what a learner is expected to know, understand, etc.


## Competences

Obtained or Developed by the students

A dynamic combination of knowledge, understanding, skills and abilities

# LOs are mainly related to Teaching & Learning

## **Levels of LOs**



# The relationship between LOs & competences (a complex area)

- A competent person is someone with sufficient skills, knowledge and capabilities.
- "Competence" refer to aptitude, proficiency, capability, skills and understanding, etc.
- "Competence" and "Competences" are used in association with learning outcomes in different countries in a number of ways.
- Some take a narrow view and equate competence just with skills acquired by training...

# **Competence and Skill**

### In the **Tuning project**, they are understood as:

Knowing & Understanding

Theoretical knowledge of an academic field

The capacity to know and understand

Knowing how to act

Practical and operational application of knowledge to certain situations

Knowing how to be

Values as an integral element of the way of perceiving and living with others and in a social context

Competence represents a combination of attributes, with respect to knowledge and its application, skills, responsibilities and attitudes. They are used to describe the level or extent to which a person is capable of performing them

# Tuning project distinguishes 3 types of generic competences

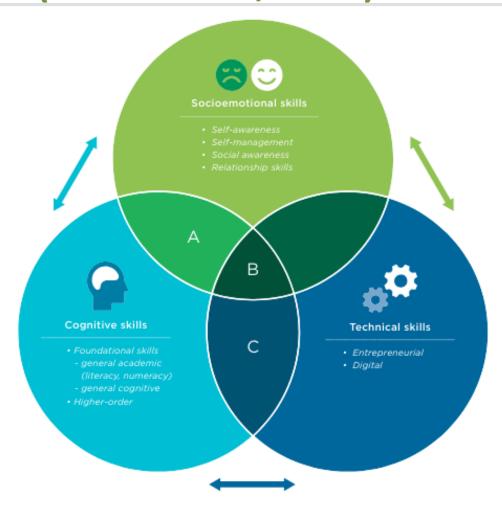
# Instrumental competences

- Cognitive abilities
- Methodological abilities
- Linguistic abilities

# Systemic competences

Abilities & Skills
 concerning
 systems
 (combination of
 understanding,
 sensibility and
 knowledge). Prior
 acquisition of
 instrumental and
 interpersonal
 competences
 required

# **Interpersonal** competences


 Individual abilities like social skills (social interaction and co-operation)

# Generic Competences / Skills (Tuning pr.)

| 1. Capacity for Analysis & Synthesis                          | 15. Problem Solving & Decision-making                          |
|---------------------------------------------------------------|----------------------------------------------------------------|
| 2. Capacity for applying knowledge in practice                | 16. Teamwork                                                   |
| 3. Planning and time mgmt                                     | 17. Interpersonal skills                                       |
| 4. Basic general knowledge in the field of study              | 18. Leadership                                                 |
| 5. Grounding in basic knowledge of the profession in practice | 19. Ability to work in a interdisciplinary skills              |
| 6. Oral and written communication                             | 20. Ability to communicate with non-experts                    |
| 7. Knowledge of a 2 <sup>nd</sup> language                    | 21. Appreciation of diversity and multi-<br>culturality        |
| 8. Elementary computing skills                                | 22. Ability to work in an international context                |
| 9. Research skills                                            | 23. Understanding of cultures and customers of other countries |
| 10. Capacity to learn                                         | 24 Abilituta washanasa                                         |
| 10. Capacity to learn                                         | 24. Ability to work autonomous                                 |
| 11. Information mgmt skills                                   | 25. Project design and mgmt                                    |
|                                                               | ·                                                              |
| 11. Information mgmt skills                                   | 25. Project design and mgmt                                    |

# The multidimensionality of skills

(World Bank, 2018)



- A: Decision making, communication, grit, self-control
- B: Problem-solving, organizational skills
- C: Mid-level technical, high-level technical

# How skills are acquired in the university context

# The development of competences and skills

- Inside or outside the University (place)
- Learning activities or non-learning activities (how)
- Formal / non-formal education, informal learning (education typologies)

# Inside or outside the University (place) Learning activities or non-learning activities (how)



Plus, activities in personal life

# The issues we need to rethink

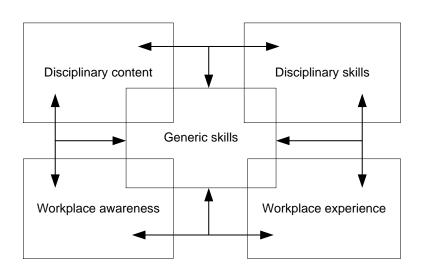
# The Categories of Learning Outcomes (LOs) in HE

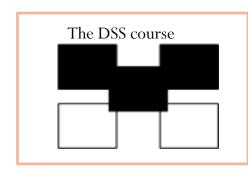
- a) Subject specific outcomes that relate to the subject discipline and the knowledge and/or skills particular to it.
- b) Generic outcomes (sometimes called transferable or transversal) that relate to any and all disciplines e.g. written, oral, problemsolving, IT use, team working skills, etc.

Generic skills are seen as important in enhancing the employability of graduates whatever their discipline.

Source: Stephen Adam (2006), "An introduction to learning outcomes", Univ. of Westminster, an expert closely involved in both the Bologna Process and the development of the EQF

## The learning outcomes & their multiple applications

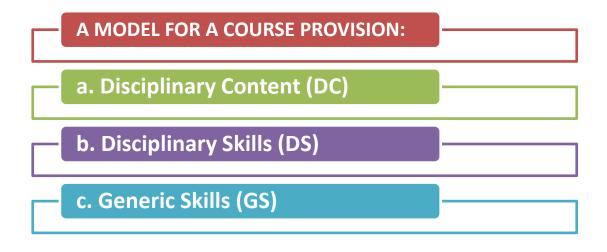

- In course level
- In assessment/grading level
- In qualification level validated by a HEI
- As generic descriptions of types of qualifications,
   e.g. linked to NQF
  - Knowledge
  - Skills: in Cognitive or Practical level
  - Competences: in respect the responsibility & autonomy
- etc.


### The courses' provision models

### Skills in HE (Barnett, 1994)

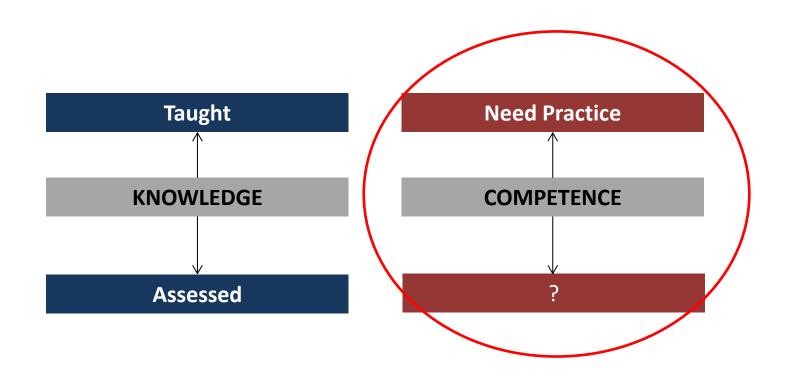
# A. Discipline-specific skills Specific C. Profession-specific skills D. Personal Transferable skills World of work

# A course provision model (Bennett et al. 2000)

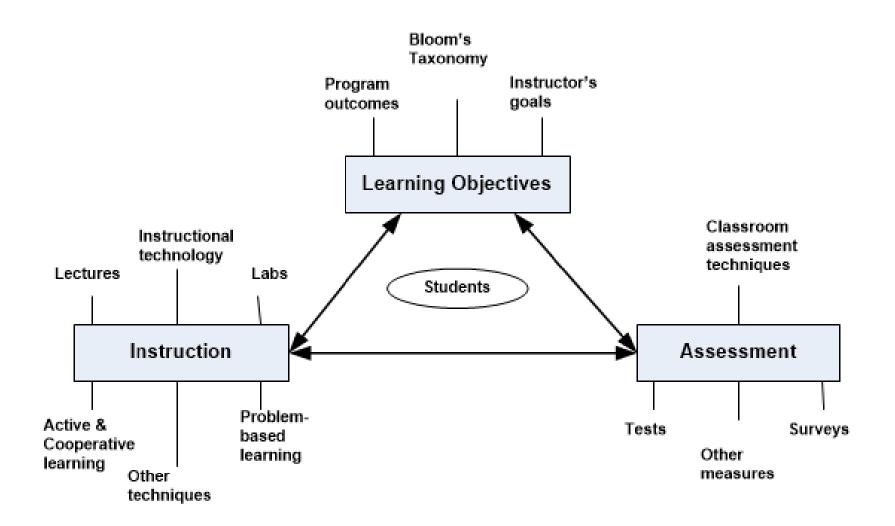





# A simplified model for a course provision and a change in teachers' attitude


Courses enhance both subject-related skills & generic skills of students.

Courses are the main "vehicles" for broader learning outcomes




- ✓ We can distinguish the "skills" in the course level, as those either related with the study programme outcomes (subject-related skills) or those which are more general outcomes (generic skills).
- ✓ Outcomes focus on what the students will be able to do.
- ✓ DC and DS are taught and assessed, while the opposite occurs with GS.

## The types of practice in HE (lack of practice)



# The ways of teaching in a student-centred approach



### Our perspective on learning

- In the course level, our perspective on learning, could focus on:
  - the big idea that we hope students will keep after graduation
  - the most important skills that students need to develop and be able to apply in the course-level and beyond
  - the skills and knowledge students will need if they pursue a career in this field
  - the values, attitudes, and habits students will need if they pursue a career in this field

# Snapshots of some research results

# (a) The most in-demand engineering generic competences and skills

What do you think are the most valuable business skills to demonstrate for an engineer to succeed within your organization? Rank your top five selections with 1= most valued

| Options (Top 5)             | #1  | #2  | #3 | #4 | #5 | Count |
|-----------------------------|-----|-----|----|----|----|-------|
| Problem Solving             | 284 | 106 | 57 | 35 | 31 | 513   |
| Listening and Communication | 166 | 82  | 53 | 57 | 54 | 412   |
| Creativity                  | 115 | 58  | 59 | 45 | 35 | 312   |
| Teamwork                    | 111 | 54  | 46 | 76 | 75 | 362   |
| High Ethical Standards      | 111 | 32  | 34 | 22 | 25 | 224   |
|                             |     |     |    |    |    |       |

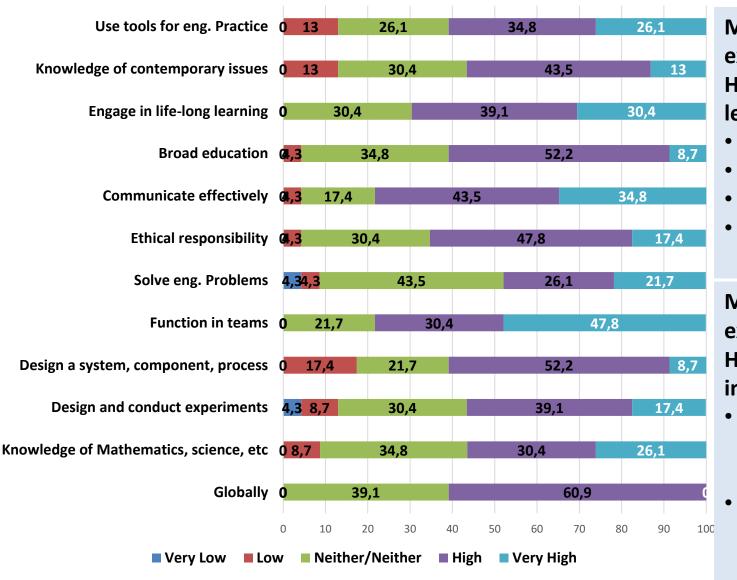
Source: "What makes a successful engineer?" WILEY. Thereza Macnamara survey results, 604 participants.

Employers are looking for "**T-shaped Engineers**" or well-rounded individuals with a breadth of soft career skills in addition to a **depth of technical knowledge**.

# (b) Summer School 2017 TUC Chania – Events on Education

Survey results for the Competences / Skills according to the ABET criteria:

- 1. Use tools for engineering practice
- 2. Knowledge of contemporary issues
- 3. Engagement in life-long learning activities
- 4. Broad education
- 5. Communicate effectively
- 6. Ethical responsibility
- 7. Solve engineering problems
- 8. Function in teems
- 9. Design a system, component, process
- 10. Design and conduct experiments
- 11. Knowledge of mathematics, science, etc.


Presentation: 21 July, 2017, Technical University of Crete, Events on Education, 13 – 21 July, organized by the European engineering students' association BEST

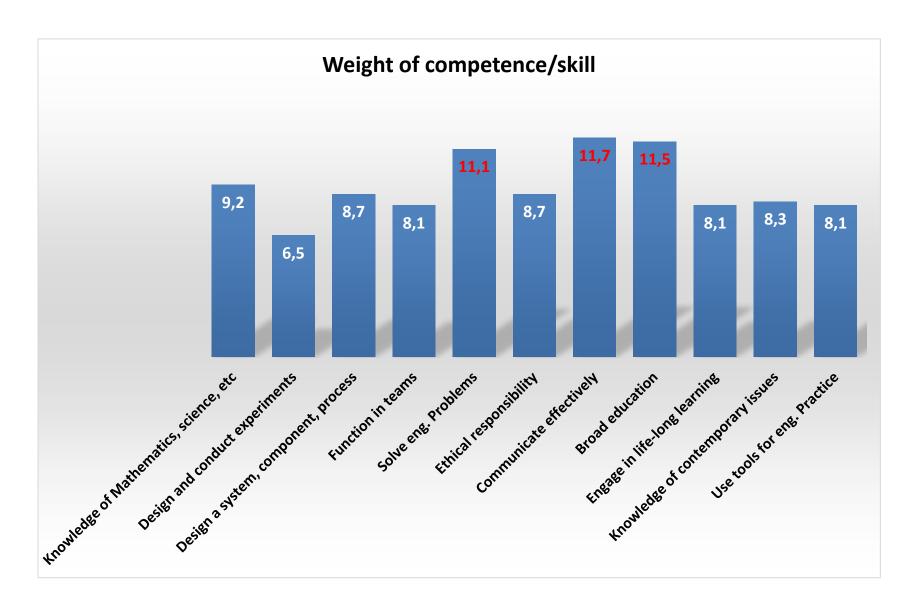
# Summer School 2017 Faculty / School of studies (N=23)

|                                                                      | •                       |  |  |  |  |  |
|----------------------------------------------------------------------|-------------------------|--|--|--|--|--|
| Faculty or School of studies                                         |                         |  |  |  |  |  |
| MINERAL RESOURCES ENGINEERING                                        | 1                       |  |  |  |  |  |
| ENGINEERING STUDIES WITHOUT REFERENCE ON SPECIALIZATION              | 23 Participants         |  |  |  |  |  |
| ENGINEERING SCIENCE                                                  | 1                       |  |  |  |  |  |
| BIOMEDICAL ENGINEERING                                               | 19                      |  |  |  |  |  |
| AEROSPACE ENGINEERING                                                | Universities            |  |  |  |  |  |
| PRODUCTION AND/OR INDUSTRIAL ENGINEERING                             | 2 17 Countries          |  |  |  |  |  |
| NON-ENGINEERING STUDIES OR SCIENCE<br>STUDIES                        | 17 Countries of studies |  |  |  |  |  |
| CIVIL AND/OR ENVIRONMENTAL ENGINEERING                               | 2                       |  |  |  |  |  |
| ARCHITECTURE AND/OR URBAN PLANNING<br>ENGINEERING                    | 2                       |  |  |  |  |  |
| MECHATRONICS AND/OR ELECTRICAL AND/OR POWER AND/OR MECHANICAL AND/OR | 10                      |  |  |  |  |  |
|                                                                      | 0 1 2 3 4 5 6 7 8 9 10  |  |  |  |  |  |

|    |                                           | _            |       |
|----|-------------------------------------------|--------------|-------|
|    |                                           | Country of   |       |
| No | University Name                           | studies      | Count |
| 1  | Ghent University                          | Belgium      | 1     |
| 2  | University of Zagreb                      | Croatia      | 1     |
| 3  | Czech Technical University - CTU          | Czech Rep.   | 1     |
| 4  | Technical University of Denmark - DTU     | Denmark      | 1     |
| 5  | Tallinn University of Technology          | Estonia      | 1     |
| 6  | Technical University of Crete - TUC       | Greece       | 2     |
| 7  | Budapest Univ. of Technology & Economics  | Hungary      | 1     |
| 8  | University of Rome 'Tor Vergata'          | Italy        | 1     |
| 9  | Technical University of Moldova           | Moldova Rep. | 2     |
| 10 | Delft Engineering University              | Netherlands  | 1     |
| 11 | AGM University of Science and Technology  | Poland       | 1     |
| 12 | Wroclaw Univ. of Science and Technology   | Poland       | 1     |
| 13 | Warsaw University of Technology           | Poland       | 2     |
| 14 | University of Lisbon                      | Portugal     | 1     |
| 15 | University Polytehnica of Bucharest       | Romania      | 1     |
| 16 | Ural Federal University                   | Russia       | 2     |
| 17 | Polytechnic University of Catalonia - UPC | Spain        | 1     |
| 18 | Instanbul Technical University            | Turkey       | 1     |
| 19 | National Technical Univ. of Ukraine - KPI | Ukraine      | 1     |
|    |                                           |              | 23    |

# Self-assessed Competences & Skills

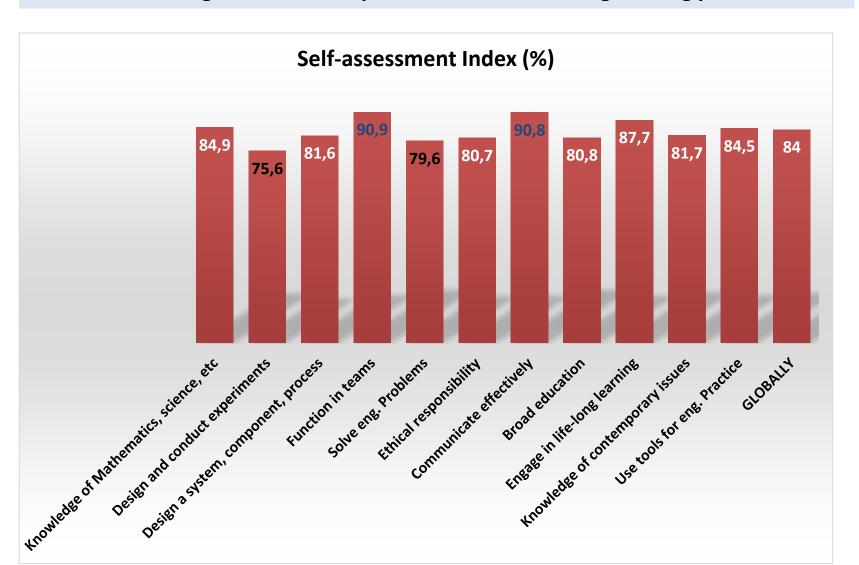



More than 50% express
High & Very High level in soft skills:

- Communication,
- Team-working
- Life-long learning
- Ethical responsibility

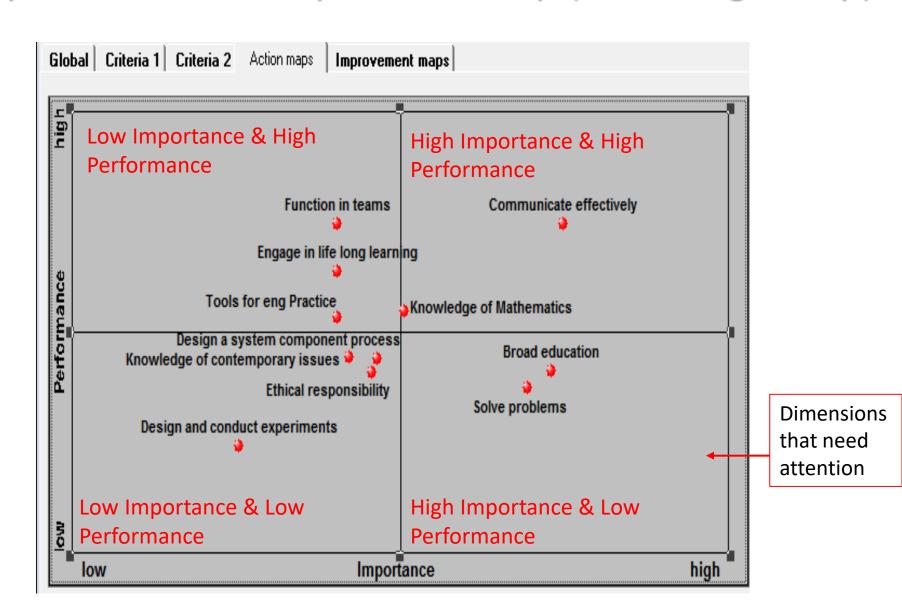
More than 50% express
High & Very High level in hard skills:

- Use modern tools for engineering practice.
- Design a system, component, or process


# The most important are communication, broad education & solving engineering problems



## Strengths & weaknesses of the engineering students


High strength in Communication and Team-work.

Weakness in Design & conduct experiments, and Solve engineering problems.



### **Action Diagram**

# A performance – importance map (or strategic map)



# (c) Students' preferences for teaching practices which improve generic skills

Presentation: 1<sup>st</sup> International Conference of the Network of the Learning and Teaching Centers in Greece, "Transforming Higher Education Teaching Practice", 6-7 July 2023, Alexandroupolis, Greece

### Pilot implementation in an engineering course

 To improve domainspecific knowledge, along with the generic skills of academic writing & speaking as well as team working

Aim



• Couse: Decision Support Systems (compulsory), 6<sup>th</sup> semester/out of 10, 2 hours per week, 3 years of application, small groups – 5 groups in total (one the 1<sup>st</sup> year & two the next 2 years), **117** students in total

Details



### The pre-designed activities in the pilot course




Discussion in a circular manner, equal opportunity for all, 1-3 times per session



10 min. exercise, collaboration of 2 students in class, 1-3 times per session



Short (written) assignments per week for a topic. Personal written feedback



Oral presentations, in groups of two. Three topics. All groups present a topic and take constructive criticism by their peers

# (RQ1) Frequency of Activities

| n. | ACTIVITIES                          | LEVELS                                   | PART-WORTHS     |
|----|-------------------------------------|------------------------------------------|-----------------|
| 1  | Short (written) assignment          | Every week<br>Every 2 weeks              | 0.119<br>-0.119 |
| 2  | <b>Oral Presentation</b>            | Every week<br>Every 2 weeks              | 0.071<br>-0.071 |
| 3  | Group Project (during the semester) | Yes, it is applied No, it is not applied | 0.149<br>-0.149 |
| 4  | Discussion in class, Q/A            | Yes, it is applied No, it is not applied | 0.554<br>-0.554 |
| 5  | Exercise in class (in pairs)        | Yes, it is applied No, it is not applied | 0.375<br>-0.375 |

Students consider that their skills are improved when they:

prepare every week a short written report along with an oral presentation, do a group project, take part in discussion (Q/A) in class and solve short exercises with their peers.

# (RQ2) The most important activities

| ACTIVITIES                          | WEIGHT |
|-------------------------------------|--------|
| Discussion in class (Q/A)           | 29.55% |
| Exercise in class (in pairs)        | 23.25% |
| Group project (during the semester) | 21.48% |
| Written short assignments           | 13.91% |
| Oral Presentations                  | 11.81% |

# (RQ3) Design (redesign) the 'typical' offered course for the development of the specific skills

- Include techniques:
  - Discussion in class based on Q/A (in a rotation manner, equitable involvement of all students).
  - Cooperation in class, in pairs, for solving short exercises (micro-groups).
  - Group projects during the semester.

# (d) Teaching in a Greek Technical University. Survey results

**Survey**: May – Oct., .2022

**Participants**: 94 members of the Academic Staff from all the Schools, or 34% of the total population

Presentation: 1<sup>st</sup> International Conference of the Network of the Learning and Teaching Centers in Greece, "Transforming Higher Education Teaching Practice", 6-7 July 2023, Alexandroupolis, Greece

#### Number of students in classrooms

Up to 20 students

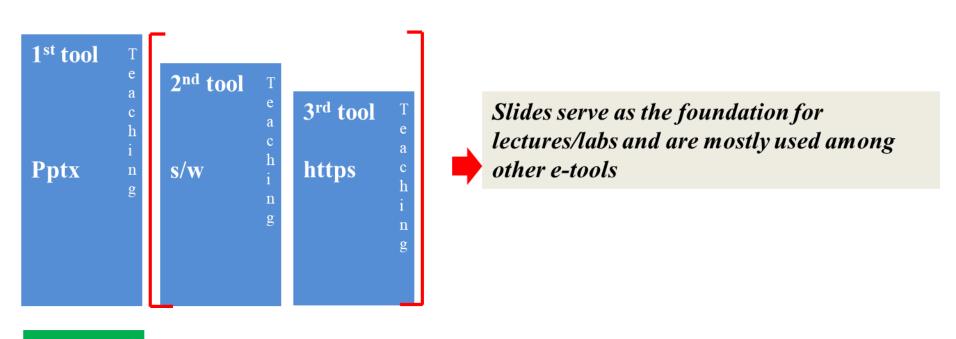
**21 – 40** *students* 

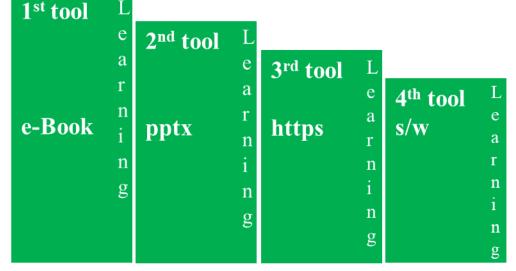
**41 – 100** *students* 

More than 100 students

The limited number of students argues for collaborative group activities that contribute to learning (under restrictions for the suitable space, possible nonconstant student participation, low faculty-to-student ratio, engineering school course load)

Less than 40 students

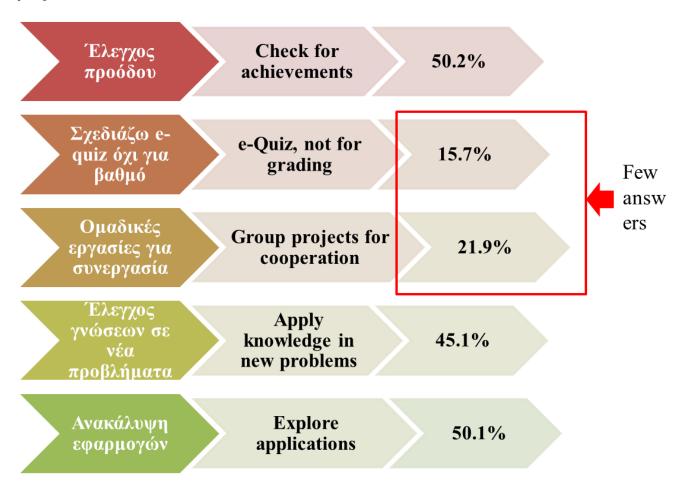

34.5% of undergraduate courses


**88.8%** of post-graduate courses

All the labs



## ICT tools in Teaching & Learning






Students, mostly, use for their learning e-Books & Slides, Web pages & scientific s/w.

### **Design of Assessment**

#### Replies often & very often

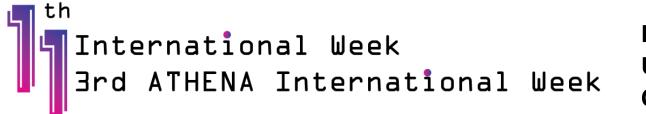


# Generic Competences / Skills are ...

#### a matter

- of Teaching
- of Learning
- of Practice

The loose use of all terms in an almost interchangeable way does lead to confusion and the development of a common terminological understanding should be encouraged.


#### Thank you for your attention

Dr. Evangelia Krassadaki, ## +30.28210.37350 ekrasadaki@tuc.gr, <a href="https://www.tls.tuc.gr">https://www.tls.tuc.gr</a>





Technical University of Crete
Teaching & Learning Support Center
University Campus, office E5.013, Chania, Crete, Greece, 73100.



Hellenic Mediterranean University, 27-31 May, 2024, Chania, Crete